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Abstract. A new class of fully discrete Galerkin/Runge-Kutta methods is constructed 
and analyzed for linear parabolic initial-boundary value problems with time-dependent 
coefficients. Unlike any classical counterpart, this class offers arbitrarily high order 
of convergence while significantly avoiding what has been called order reduction. In 
support of this claim, error estimates are proved and computational results are presented. 
Additionally, since the time stepping equations involve coefficient matrices changing at 
each time step, a preconditioned iterative technique is used to solve the linear systems 
only approximately. Nevertheless, the resulting algorithm is shown to preserve the 
original convergence rate while using only the order of work required by the base scheme 
applied to a linear parabolic problem with time-independent coefficients. Furthermore, 
it is noted that special Runge-Kutta methods allow computations to be performed in 
parallel so that the final execution time can be reduced to that of a low-order method. 

1. Introduction. In this paper, linear parabolic initial-boundary value prob- 
lems with time-dependent coefficients are considered. Specifically, the goal is to 
construct and analyze fully discrete approximations to the unique solution u(x, t) 
of 

atu = -L(t)u in ? x [Ot*], 

(1.1) < U = 0 on (92 x [O,t*], 

tx(x,O) = u(x) in Q, 
where 

N 

L(t)u -- -E Ski (tij(xX t) a u) + to(x, t)u. 
i,j=1 

Here, ?2 is a bounded domain in RN with (92 sufficiently smooth. Also, ?ij (x, t) 
and to(x, t) are assumed to be smooth. Further, on ?2 x [0, t*], the matrix {eij)N,1=, 
is symmetric and uniformly positive definite and to is nonnegative. Also, the initial 
data u0 is assumed to be both sufficiently smooth and compatible, and precise 
hypotheses on the required smoothness of the solution u are made as needed. 

Now, for 1 < p < oo and integers s > 0 let W81P =_W P((Q) represent the 
well-known Sobolev spaces consisting of functions with (distributional) derivatives 
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of order < s in L = Lp(Q). Also, let 11 IIw-.P denote the usual norm. Then, in 
particular, take HI = WS,2 and denote its norm by 118 In addition, let Ho be 
the subspace of H1 consisting of functions vanishing on t92 in the sense of trace. 
Further, let the inner product on L2 be denoted by (., .), and the associated norm by 
11 11. Next, given Hilbert spaces H, H1, and H2, W (H1, H2) represents the Hilbert 
space of bounded linear operators from H1 into H2, and W (H) _ (H, H). Also, 
for t2 > tI, W ([tI, t2], H) denotes the Banach space of operators, continuously 
differentiable to order I > 0, from [tI, t2] into H. See Adams [1] for more details. 

Now for each t E [O t*], let L(t) be extended to be L2-selfadjoint with domain 
H2 n Ho. Also, assume that for I > 0 and m > 0 sufficiently large, 

L(t) E W1 (oj t*], W(Hm+2 n Ho' X Hm)) 

so that 

(1.2) IIL(') (t)vlIm < C(1, M) IIVIlm+2 Vv E Hm+2 n Hol X 

where L(') (t) = DIL(t). Note that here and throughout this work, c (sometimes 
with a subscript) is used to denote a general positive constant, not necessarily the 

same in any two places. Moreover, if in a given inequalityy there is a crucial 

element upon which c is meant to depend, such dependence is indicated explicitly 

as in (1.2). Next, introducing the L2-selfadjoint solution operator T(t) for which 

T(t)L(t) = I on H2 nHo and L(t)T(t) = I on L2, assume that for I > 0 and m > 0 
sufficiently large, T(t) E WI ([O. t*,] '(Hm, Hm+2 n Hog)) so that 

(1.3) IIT1(t)(0VIIm+2 < c(l,m) IvVIm Vv E Hm, 

where T(0) (t) = DIT(t). Finally, assume that for sufficiently large I > 0 and m > 0, 
the solution u and the data uo satisfy 

(1.4) sup Ik9|u(t)IIm < c(m,l)I|uII|m+21. 
O<t<t* 

For details connected with (1.2)-(1.4), see Sammon [17]. 

A rough description of the results now follows. For this, let h and k denote 

spatial and temporal discretization parameters, respectively, and suppose that Uh' 

is a fully discrete approximation to u(nk) obtained according to the base scheme 

(1.32) described below. In Section 3, the error committed by (1.32) is shown to 

satisfy 

(1.5) max -lUh - 11 < c(hr + kV + hk-112 + h2k'-l)IIu0IIcj 
O<n<n~ 

where ca _ max(r + 1, 2p + 2), p _ min(v, q + 1), q is the number of Runge-Kutta 

stages, and r and v represent, respectively, optimal exponents characteristic of 

the Galerkin method and the Runge-Kutta method upon which the fully discrete 

scheme is based. Note that under the mild condition that either r < 2p or h2 < ck, 

the above error is &9(hr +k"). Further, it is explained below that the methods which 

are most easily implemented have the property that v < q + 1, which makes the 

estimate optimal. It is also worth mentioning that inverse properties (associated 

with the use of a quasi-uniform triangulation of (Q) are never explicitly assumed, 

and as explained after Proposition 3.3, the constructions of Section 2 are required 

for this. 
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Next, Section 4 deals with (1.39), a variant of the base scheme which incorpo- 
rates a preconditioned iterative method (PIM) for the time stepping equations 
(1.34). Specifically, these equations are solved only approximately at the nth 
time level with, say, In outer iterations (4.3) and ji inner (PIM) iterations (4.8), 
and it is shown that the above convergence rate can be preserved while keeping 

En=O Injn/n* bounded independently of h and k. Hence, the order of work is 
asymptotically as that for a linear parabolic problem with time-independent coef- 
ficients. Additionally, in [15], semilinear and quasi-linear problems are considered, 
and the latter are treated with methods such as those reported here to obtain 
comparable results. 

It should also be mentioned that the discovery of the methods described below 
was fortuitous. Note that there are extrapolation options other than (1.28) which 
are apparently more natural. For example, DI could be replaced by T1 in (1.28) 
since the latter is consistent with (1.33). This idea is considered together with 
(1.33) in a computational section. However, under rather general conditions, (1.5) 
is proved and demonstrated computationally only for (1.32) and (1.39). In fact, it 
has been reported by many authors ([7], [13], [8]) that unless the solution to the 
differential equation satisfies very restrictive conditions, a classical fully discrete 
scheme fashioned after (1.16) cannot be expected to offer optimal order of con- 
vergence. Furthermore, with regard to efficiency, (1.33) requires the formation of 
q new stiffness matrices at every time step. On the other hand, (1.32) and (1.39) 
require only the formation of a single such matrix per time step and, at the expense 
of at most 100q-1% more storage, the recall of p - 1 of its counterparts formed at 
previous time steps. 

In [7], Crouzeix analyzes (1.33), and with Butcher's conditions C(p - 1) and 
B(v), [5], he establishes the L2 estimate 

max 
- 

Uhn-UnI = 9(h' + kmin(P v)). 
O<n<n* 

Since 9(h' + kv) has not generally been observed experimentally, this suboptimal 
phenomenon has been called order reduction. Note further that this L2 estimate 
depends upon the assumption that the stages are computed exactly. On the other 
hand, in [13], Karakashian considers approximating the stages with a PIM and 
proves that the above estimate holds while the order of work is kept optimal. Also, 
he constructs collocation type implicit Runge-Kutta methods (IRKM's) for which 
p = v = q + 1. Nevertheless, such methods have limited stability for q > 3. In 
fact, there is a general trade-off among IRKM's in the sense that the more stable 
methods suffer more from order reduction while those which do not suffer so, are 
not as stable. However, when (1.33) is modified as in (1.32), it is possible to achieve 
high order even for very stable methods. For example, in Section 4, an algebraically 
stable IRKM is used for a problem of the form (1.1), and optimal-order convergence 
is obtained with (1.39) but not with a counterpart based on (1.33). 

Douglas, Dupont and Ewing [10] have analyzed Galerkin/Crank-Nicolson fully 
discrete approximations for a class of quasi-linear parabolic problems, proving an 
optimal L2 estimate for a method which is second-order in time. Also, this rate 
was shown to be preserved by an algorithm in which the time stepping equations 
are solved only approximately with an optimal order of work. Then studying (1.1), 
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Bramble and Sammon [3] have obtained similar results for some Galerkin/Obrech- 
koff fully discrete approximations, proving optimal L2 estimates for methods up 
to fourth order in time. Finally, note that in [9], Dougalis and Karakashian ana- 
lyze Galerkin/Runge-Kutta fully discrete approximations for the Korteweg-De Vries 
equation. In fact, they prove optimal L2 estimates for some modified IRKM's which 
are up to fourth order. Hence, the spirit of their work is similar to that of the present 
study. 

In the remainder of this section, there is a presentation of material relevant to 
the spatial and temporal discretizations considered here, which concludes with a 
precise definition of the schemes for which the above claims are made. 

1.1. Spatial Discretizations. To make the following machinery more definite, 
consider the Ordinary Galerkin Method for the spatial approximation of the solution 
to (1.1). Let D(t)(,.) be a bilinear form defined by 

N 

D(t)(v,w) i (tjj(t)a;iVaz W) + (eo(t)vw), v,w E Hol. 
i,j=l 

Next, let Sh represent a finite-dimensional function space consisting of continuous, 
piecewise polynomials of degree < r - 1, vanishing on all. Then, take Th (t): L2 

Sh to be an approximation to the solution operator T(t), defined by 

D(t)(Th(t)w, X) (w, X) Vw E L2, VX E Sh. 

For more examples of Galerkin methods satisfying the assumptions enumerated 
below, see Bramble, Schatz, Thomee, and Wahlbin [4], and Sammon [17], [18]. 

Depending on the Galerkin method used, let HE be a linear space equipped with 
a norm E and satisfying the following properties. Suppose H2 n Ho' C HE and 
that 

lIViii < CIiViIE VV E HE, and |IViIE < cIIvII2 Vv E H2. 

For example, for the method described above, take HE = Ho'. Now let {Sh}O<h<l 

be a family of finite-dimensional subspaces of HE satisfying the following for some 
integer r > 2: 

inf {1Iv - xiI + hIlv - XIIE} < ch8IIvII8 Vv E H8 n Ho', 2 < 8 < r. 
XESh 

Then suppose that for each t E [0, t*], a family of operators {Th(t)}o<h<1 is given 
satisfying: 

(i) Th(t): L2 -* Sh is selfadjoint, positive semidefinite on L2, and positive definite 
onSh, 

(ii) For 0 < h < 1, Th(t) E WI ([0,t*I, (L2, Sh)) for I > 0 sufficiently large, 
(iii) For 2 < s < r, 0 < t < t*, and I > 0 as large as required in the sequel: 

(1.6) ii[T(')(t)-T, )(t)]vii + hii[T(0)(t)-T, )(t)IviiE < ch'IIVIIs2 Vv EH- 

Hence, the restriction of Th (t) to Sh is invertible and its inverse is henceforth 
denoted by Lh(t). Since Lh(t) is also positive definite and selfadjoint on Sh, both 
Lh(t) and Th(t) have square roots, but it is also assumed that 

(1.7) cIIT,/ (t)XII S CIIT,1 (t)XIIE < llxii < IIXIIE 

? c /L2 (t)XII < civil 2 
(t)XlIE VX E Sh. 
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Also, Lh(t) e Fl([Ot*], W(Sh)) for I > 0 sufficiently large and in fact, Bales [2] 
has proved that for 0 < st t<t*, and I > 0: 

(1.8) IIL L (t)T (L (t)xI + IT (t) Lt( )Th' (t)XII < c(l)JXJJ VAX E Sh. 

Then using the selfadjointness of these operators, the following are straightforward 
consequences of (1.8). For 0 < sit < t*, 

(1.9) IITl'2(s)Lh'2(t)XII + IILh'2(s)Th' (t)XII < C11X11 VX E Sh, 

(1. 10) I (L () (8) X, X)I < c (1)(Lh (t) X, X) VX E She 

In addition to (1.10), assume that for 0 < t < t* and I > 0, 

I(L(h (t)XI 0) 1 < c(l) liXilE ||0||E VXI 0 E Sh - 

Next, defining the elliptic projection operator as PE(t) -Th(t)L(t), it follows from 
(1.6) and (1.2) that for 0 < t < t*1 

(1.11) II[I-PE(t)]vII + hII[I-PE(t)]VlIE < ch8I|vI|s Vv E H8 n Hog 2 < s < r. 

In fact, with w(t) -PE(t)u(t) and q7(t) _ u(t) -w(t), (1.2), (1.4), and (1.6) can be 
used [3] to show that 

(1.12) sup {II,0)(t)II + hII?(1)(t)IIE} < c(l)h8IJuoII8+21, 2 < 8 < r. 
o<t<t* 

Finally, it can be shown that Po Lh(t)Th(t) is for every t E [0, t*] the orthogonal 
projection of L2 onto Sh and that Th (t) = Th(t)PO. Then, since I - Po is majorized 

by I - PE in L2, it follows from (1.11) that 

(1.13) II(I-Po)vll < ch8IlvIJs Vv EH, n Hol, 2 < s < r. 

Now, (1.1) has the following semidiscrete formulation. Find Uh: [0, t*] -+ Sh 

satisfying 

(1.14) { tUh 
= 

- Lh (tUh 

Uh(O) - h 

where uo E Sh is a suitable approximation to uO. In [18], Sammon analyzes approx- 

imations of the form (1.14), and with assumptions comparable to those described 

above, he proves an optimal L2 estimate 

Sup IU(t) - Uh(t)I| < Chr'IIUOIlr. 
O<t<t* 

In the present paper, semidiscrete approximations are not analyzed. Instead, (1.14) 

serves only as a source of inspiration for fully discrete approximations, and Uh does 

not appear in forthcoming proofs. 

1.2. Temporal Discretizations. For the temporal approximation of the solution 

to (1.14), Implicit Runge-Kutta Methods (IRKM's) are now introduced. Given an 

integer q > 1, a q-stage IRKM is characterized by a set of constants {aij~q}?j=1, 

bj~Jq=1, and {rij}q_, and it is convenient to make the following definitions: 

A-{aij}1<ij<q, b _(bib2,... , bq)T, B= diag {bi}, 
1<i<q 

M_ + T_ bT 1 T _ diag 1i , e-=(1,1, ... . 1)T. 
1 <i<q 
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For the IRKM formulation used in this work, choose arbitrarily to E R, yo E Rm, 
F: Rm+l -- Rm sufficiently smooth, and k > 0 sufficiently small, so that for 
to < t < to + k, smooth functions y, y: R -- Rm are well defined by 

(1.15) { Dty(t) = F(ty(t)), 
y(to) = YO, 

q 

yi"t) = YO + (t -to) E aij F(to + 'rj (t -to), yj(0) I 1 < i < qI 

(1.16) j-1 

| (t) = YO + (t _to) Ebi F(to + ri (t -to), Yi M) . 

The method is described as explicit if aij = 0, i < j, and implicit if for any i, 
aii 0 O. Also, it is said to have order v if for every y and y defined as above, 
Dly(to) = Dly(to), 0 < 1 < v. Butcher [5] has developed simple conditions for 
the above parameters which guarantee a given order; however, only the following 
is explicitly required in this work: 

(1.17) 1!bTA'-le= 1, 1 < 1 < v. 

To see the roots of condition (1.17), let (1.15) have m = 1, to = 0, yo = 1, and 
F(y) = -y, so that y(t) = e-t. Then, from (1.16), y(t) = r(t), where r(z) is a 
rational approximation to the exponential e-z given by 

(1.18) r(z) _ 1 - zbT(I + zA)- 1 e. 

Expanding this expression shows that r(z) is a vth-order approximation to the 
exponential if and only if (1.17) holds. Next, with regard to stability, an IRKM is 
said to be AO-stable if 

(1.19) Ir(z)l < 1 Vz > 0, 

and strongly Ao-stable if 

(1.20) sup Ir(z)I < 1 Vzo > 0. 
Z>ZO 

Also, a method is called algebraically stable if M and B are positive semidefinite. 
However, if an algebraically stable method is irreducible (not equivalent to a fewer- 
stage method), then 

(1.21) B is positive definite, and M is positive semidefinite. 

One other notion of stability which is useful here is that of dissipativity: 

(1.22) -1<-1+6<r(z)<1 Vz>0. 

AO-stability is required of all IRKM's considered in this work. However, in order 
for the approximations to decay with respect to the time step, strong AO-stability 
must hold. In fact, to guarantee decay, both (1.20) and (1.21) are assumed. Then 
in Section 4, the iterative scheme (1.39) described below requires at least (1.22) in 
addition to 

(1.23) r(z) < 1 Z-c + Vz > 0. 
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This growth condition is extremely mild, and this author is unaware of any popular 
IRKM which fails to satisfy it. Also, requiring (1.22) and (1.23) improves on a 
related result of Karakashian [13] in which (1.20) is used. Next, note that the 
spectrum of A, u(A), is related to the poles of r(z), and in addition to the above, 
it is assumed throughout this paper that 

(1.24) u(A) C {x E R: x > 0}. 

Returning to the temporal discretization of (1.14), let a q-stage IRKM of order 
v > 1 be given. Assume also that there exists a q x q matrix D satisfying: 

(1.25) D[e; Ae; ... ; Aq-le] = [Ae; 2A2e; ... ; qAqe]. 

Again, this author is unaware of any well-known IRKM for which such a D fails to 
exist. In fact, the so-called collocation type methods are those for which D = T. 
Now with M =_ min(v, q + 1), it follows from (1.25) and (1.17) that 

(1.26) 1AD-1"e = D'e, 1 < 1 < A - 1, 

(1.27) lbTDL-le = 1, 1 < ? < A. 

Next, for 0 < n < n* -1, n*k = t*, let the real values {6m}ni- 1 be chosen distinctly 
so that the q x q matrices {Fr}n7-1 are well defined by 

m=0 
as the computation of their components involves the inversion of the Ms x , Van- 
dermonde matrix {(6m)l}P-1UO. In addition, assume that these parameters are 
bounded independently of n: 

(1.29) Omax- 6lm, + m ajx l(rn )ij < c. 

Actually, it is clear below that the natural and computationally advantageous choice 
for (1.28) is: 

(1.30) mO<n<,u-2, 
(1.30) M, 1 < n < n*-1. 

In any case, define tn _ nk and rmn=tn + 6mnk, and for 0 < n < n*-1, 0 < t < t*, 
and 0 < s < k, let the following be defined on Sh = 

h (t) =_ diag{Lh(t)}, h h (tn) 
qxq 

(s) h (tn + 6 ms), I( 
m=0 

Now with 

(1.31) Uh? = [I + kL4]-1PO[I + kL?]u?, 

suppose that for 0 < n < n*-1 the approximation Uhn E Sh is given, where Uhn J Un 
and un u(x, tn). Then, let Uhn+1 J Un+1 be given by what is henceforth called 
the base scheme: 

1 32 J ~~~~~un = eUh-k---n 
--- 

k gn (1.32) 
h 

Un =e -kA-lh)Uhn {U~h = (I - bTA-le)Uhn + bTA-lUh, 
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where UC E Sh is well defined provided [I + kAih] is invertible. Here, A-h, 

for example, is understood in the sense of composition of operators defined on Sh. 
Note that if the temporal discretization of (1.14) were accomplished as prescribed 
by (1.15) and (1.16), the following would result: 

C = eUhn - kAhn Uh, 

(1.33) l -Uh = (I - bTA-le)Uhn + bTAlU', 

where 5hn diag {Lh(tn + kri)} 
1<i<q 

However, as discussed in the beginning of the Introduction, (1.32) is designed to 
improve upon (1.33) with the indicated modification. 

Now, with regard to iterative approximations, note that an efficient method is 
needed for solving the time stepping equations 

(1.34) [I +kA ]Un en 

According to (1.24), A can be transformed as follows: 

SAS-1 = A diag {Ai} + subdiag{lO}, Ai > O 1 < i < q, 
1<i<q 2<i<q 

i= O or 1, 2 <i < q. 

Then Vn Uh can be obtained by the (outer) iterations 

(1.35) [I+kAS'?h`](SV7 ) = {SeUhn+kSA(5hn -I)V_ 
- 

}- R'n 1 <1 I <I, 

where 
n-1 

(1.36) V Z 1)n- ( U+ l, 1 < n < * 1, = eU, 

n = 0, 

(1.37) <. n+1 < < n -1, 

(0n-, 0 n~, 
/in j n-i it 

,u, p + 1< n < n* -1 

and (1.35) is started with V _ V provided {Um}=ln1'14n are computed as 
indicated below. Now consider the simple but important observation that if 

(1.38) Ai 7 Aj, i 0 j and Oi =O, 2 < i < q, 

then the block system above decouples into the following equations, which can be 
solved in parallel: 

[I + kAiLn](SVn)i = (RJl ), 1 < i < q. 

Then, to avoid having to factor new coefficient matrices at every time step, a 
preconditioned iterative method is used to approximate VI with (inner) iterates, 
say {V(n }O<j<j . Further, it is shown that there exist integers {jn }Yn- such 
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that j*- I njn/rn* < c while the convergence order (1.5) is preserved for what is 
henceforth called the iterative scheme: 

(1.39) Uh nn 
Uh.n+ = (Ib bTAl-e) Uhn+bTAlUJh. 

Finally, let the initial approximation for this scheme be given by (1.31) also. 

2. The Product Space Operators. In this section, the machinery elaborated 
between (1.2) and (1.13) is generalized to analogous operators defined on products 
of spaces on which their precursors are defined. Also, certain technical lemmas 
are established for later use. Now, in addition to Sh, define the product spaces 
L2 = [L2]I HO-[HI]q, HE [HE]4, and Hm = [Hm]q. Also, on these spaces 
define 

q A 1/2 q 1/2 

|| 11||E- E i112 1 11 - E 11 Xi112 

q 

(<>,at) -(i, f), 1?11= ob, D) 1/2 

i=1 

Then, for 0 < n < n*-1, 0 < t < t* and 0 < s < k, let the following be defined on 
H2 nH': 

Y(t) = diag{L(t)}, 5n = y(tn 
qxq 

2fl(s) _ F r2(tn + 6ms), _ k 
m=O 

The first step is to construct, for 0 < n < n* - 1 and 0 < .s < k, operators 
n 

(s) 
(Tn =- Tn (k)) satisfying 

(2.1) -Sn (s)(s) = I on L2, 

|9 (s) (s) = I on H2 nH. 

Note that with S9(t) diagqxq{T(t)} and 2/n = g(tn) defined on L2 for 0 < t < 

t* and 0 < n < n* - 1, 
n 

(s) cannot be taken as a combination of such operators. 

LEMMA 2. 1. For 0 < n < n* -1, Y(s) E Ft([O, k] 7(Hm+2 nH1,Hm)) 
where 1 m > 0 are as in (1.2). Also the following hold for all v E Hm+2 n Ho 
O<s<k, andO<n<n*-1: 

(2.2) jjal Y (S)Vjjlm < c(l, M)||Vjjm+2, 

(2.3) 11 [y"(s) _ yn]Vllm < c(m)killVlm+2 v 

Proof. The crucial observation is that by (1.28) with 1 = 0: 

1s-1 H-1 tn+6!,, 

y7" (8) -_Fn =E rZF [y(tn + 6is) -_s] = E r, | (I) (t) dt 
i=O i=O 

and (2.3) follows with (1.29) and (1.2). Also, (2.2) follows using (1.29) and 

(1.2). O 
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THEOREM 2.1. Let m, 1 > 0 be as in (1.3). Then for k small enough, and 

0 < n < n* - 1, there exist operators 
,n 

(s) e WI ([o, k], W(Hm,Hm+2 n HO)) 

satisfying (2.1) and 

(2.4) IIV4Yn(8)VIIm+2 < C(lM)IIVIIm VV E Hm. 

Proof. The details appear in [14]. However, the key idea is to use (2.3) to show 
that with v E Hm, Yu = 9n{v + [2n _- I(8)]U} is a global contraction on 
Hm+2 n HO, provided k is small enough. Then the unique fixed point is taken to 
be IY'(s)v, and (2.4) is established inductively. o 

The next step is to construct for 0 < n < n* -1 and 0 < s < k operators (s) 
(Yh - h (k)) satisfying 

(2.5) { 3U(s)Z(s) on Sh, 

where .Ao -diagqxq{Po}. Note that with 7h(t) _ diagqxq{Th(t)} and 9?^n 

,7(tn) defined on L2 for 0 < t < t* and 0 < n < n*-1, Y(8) cannot be taken as 
a combination of such operators. 

Now let {Dh(t)(., -)}o<tat- be a family of bilinear forms defined on HE x HE SO 
that 

Dh(t)(X, q) = (Lh(t)X, k) VX, 4 e Sh. 

More specifically, with D') (t)(,.) = D1Dh(,.), assume that for 0 < t < t*, I > 0, 
and 2 < m < r, 

ID(') (t)(v, w) - (L(l) (t)v, w)j < c(l)hm- 1 lvIm IIw - UIIE 

Vv E Hm n HO, Vw E H2 nfHO + Sh, Vu E H2 n HO, 

IDh )(t)(w,v)I < C(l)IIWIIEIIVIIE Vwv E HE, 

C||X|12 < Dh(t)(XXx) VX E Sh- 

For example, these assumptions are readily verified for the Ordinary Galerkin 
Method mentioned in the Introduction. For additional examples, see Sammon 
[17], [18]. Next, for 0 < t < t*, O < n < n*-1 and 0 < s < k, let the following be 
defined on HE X HE: 

q s-1 

h (t) (wv) _= E Dh(t)(Wi, Vi), Ws(~)_ER~ aS(n,) 

i=1 m=0 

Discrete counterparts to Lemma 2.1 and Theorem 2.1 appear next. 

LEMMA 2.2. For 0 < n < n*-1, - s) E W'([Ok], I 6(Sh)) where I > 0 is 

as in (1.8). Also, the following hold for all f E L2, 0 < tt1,t2 < t* OI< s < k, 

0 < n < n* -1: 

(2.6) ( c(l ) I|f ||, 

(2.7) lih/(t) [Yh (t2)-s ht ;/ tf| < C~t2- || | 

(2.8) II3,112(t) [(s) - 1/2 (t)f || < ckllf ||. 

Proof. The manipulations required are similar to those needed for Lemma 2.1, 
except that (1.8) is used instead of (1.2). o 
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THEOREM 2.2. Let 1 > 0 be as in (1.8). Then for k small enough, and 0 < 
n <n* - 1, there exist operators nEs) E W7([0, k], &4(L2, Sh)) defined by 

(2.9) = (f,X) Vf e L2, VX e Sh, 0 < < k, 

and satisfying (2.5) and, in addition, for all f E L2, for all X E Sh, 01, 02 =, 2' 
0 < t < t*y 0 < 9 < ky 0 < n < n* - l 

(2.10) hII] (s)f lIE < c(l) If II, 

(2. 1 1) ll2@ -(t) 
- 

0l<(S 2 (t)XIIl < c(l) ||X || 

Proof. The details appear in [14]. However, that Yn (s) is well defined by (2.9) 
follows once h(s) is shown to satisfy the hypotheses of the Lax-Milgram Lemma 
[6]. Then, (2.10) and (2.11) are established inductively using (1.7), (1.9), (1.28), 

(1.29), (2.6), and (2.8). 0 
Finally, a generalization of (1.6) is required for the proof of Lemma 3.3. 

THEOREM 2.3. For k > 0 small enough, the following holds for 0 < n < n*- 1, 
0 < < ky l > O. and 2 < m < r: 

Ik91 [Yr(s) -Y<(s)IvII+hII64 [yrfl(8)- -Y(s)Iv lIE < c(l)hmIIVIIm-2 Vv E Hm2. 

Proof. See [14]. 0 

3. The Base Scheme. In this section, the base scheme (1.32) is analyzed for 
the approximation of the solution to (1.1), and (1.5) is established. That the stages 
are well defined depends on the next lemma. 

LEMMA 3. 1. Provided (1.24) is satisfied, [I + kA5hn] is invertible, and for k 

small enough, [I + kAI,] is as well. Also the following hold for all X E Sh, 
0 <0< 1 01,02=0, = -02 = ?y 0? < n < n* -1: 

(3.1) II(k~hn)0[I + kA4IYhn]-Xll < cIIXII, 
(3.2) II(k2hn)e1 [I + kA -1l(kfhn)02XII <lxii. 

Proof. The invertibility of [I + kA5,4hn] and the estimate (3.1) involve a spectral 
argument after A is transformed to Jordan form, and the details are provided by 
Karakashian [13]. Now set 

E1-[I + kA5'9h ]-kA(5h -F) and E2 kA('h -t -T)[I + kA5h ]-I1 

so that 

(9hn)/[ + kA h]G )1/ = [I + kA5'9hn][I - El (gh 
(3hf)/[ + 

kA_,n](5h 
)1/ = [I -(n))1/2E2(2yn)1/2][I + 

By (3.1) and (2.8), 
11(yan)1/2 l(g-n)1/2XII + II(g-n)l/2E2(ya~n)l/2XII<c|X| XES 

I~)1ElG9 )h2XI h h ? ckllXll VX E Sh- 

Hence, for k small enough, [I + kA~h] is invertible. Next, for 02 = 0, ? , 

(k2nh))1/2[I + kAi S 1(k5hn)02 

[I - ( n) 1/2E (,gn) l/2]-1 (ky2hn) 02 +1/2 [I + kA n ]l 
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and (3.2) follows for 01 = 2 For 01 = 0, ? ?, 

(kFhn ) 0 [I + kA_]- 1 (k2hn) 1/2 

(k5hn)O1+l/2[I + kAhn]-1 [I - h ) 

and (3.2) follows for 02 =2. Now, for the case 01 = 02 = 0, with X E Sh chosen 

arbitrarily, 

11X112 < '2I[I + kA n]XII2 + 2IIXII2 + kI(AZX, X)I. 

Then, with hP= (2h)1/2X, by (2.8), 

I(A4_ ) _ X, (AX I)I + I(p9pn)1/2[ ---n rn) 1/2 T 
< c(1 + k) (5hnX, X). 

Also by (3.2) with 01 = 0, 02 = 0, 

II (khn)12XII < cll[I + kA4n]XII, 

and the remaining case for (3.2) follows after combining the last three inequali- 

ties. 0 

Now, for the sequel, let the following be defined: 

(n= n_,n tn-Un-wn 

rh I - kb Shn [I + kA.4-hn] e, Mhn I - kb h[I +kA L]-e 

fun _E l DI ea' Un , (0 < s < k), jin=n(k) 
C.n () h S (S,) Un ()(O < S9 < k), (wn 

= Cn (k) . 

After some straightforward calculations, the following error equation is established: 

= h + kbTYh [I + kAZ] 
{ k-ew kA eatW(T) 

m=O 

- kbTA-l [I + kAI ,elA j e{P(rm) -Pu(rm)} 
m=O 

(3.3) - kb TA-1 [I + k A_,]-'l : rn eat I[PE (,rmn Po]u(Tmn) 
m=n 

- {wn+1 _ kbn T n Tn) 

m=O 
4 

1=1 

Now, since it is required in Section 4, stability and consistency are established 

in the following norms, which according to (1.7) are well defined for 0 < n < n*: 

IXIIIn- {(x, X) + k(LhX, X)}1/ 7 X E Sh. 
Also, from (1.10) with I = 0, it follows that these norms are equivalent: 

(3.4) CiIIIXIIIm < IIIXIIIn < C2 IIIXIm VX E Sh, 0 < m, n < n. 

As in Section 2, for X E Sh, take IIIXIIn {= xiIn}112. 
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In the next two propositions, two classes of IRKM's are considered in order to 
obtain the following stability inequality for (3.3): 

(3-5) ~ + I11 2 < (1 + jk)ljenI12 + ck 1llon112, 0 < n < n* 

PROPOSITION 3.1. Suppose (n+l = qfntn + 4on, and let (1.19) be satisfied. 
Then there is a constant c such that (3.5) holds. In fact, c < 0 if (1.20) holds and 
c(1) of (1.8) is small enough. 

Proof. Triangulating with rhn n, one obtains 

lll lln+12 < {ll l[ahn -n] e n +rn en |+ lIon Il} n+l II n~I~ II~ - hrh ~ + ~~In + 14hIn I~n}I In 
1lIr nen"II2 + lI"n+1I2I(1 + ek) + c(ek) `I{I[Mhk - rn]rnII2 + I4In}. 

By some straightforward calculations, 

-h 
_ rh = bT A1 [I + kAZ] (k. . ) 

X A(g9n ) 1/2 (an _- a )p(n) 1/2 (kn)1/2[I + kA.hn1-e, 

so that with (2.8), (3.1), and (3.2), it follows that for 01,902 = 12 

(3.6) II(kLh)O1 h - rh4(kLh)O2X < II?cklx VX E Sh. 

So, there is a c1 > 0 such that 

(1 - k) lll~n+111l2 < ljrhn~nI2 + E-lcl keen nI2 + ck-l lion 112 

Since (3.6) depends on (2.8) and hence (1.8), the smallness of cl is determined by 
that of c(1) in (1.8). Now by (2.7), with Xn+1 =(Ln)l/2v+l 

llln+1112 illl(n+11112 +k(h)1/2 [tn+l _hn] (Thn) 1/2x X+ X Xn 1) n~ = nI~"II + k((Thn) 1[Lh~ - L 

< (1 + c2k)lIlIl unI 

where again the smallness of C2 is determined by that of c(l) in (1.8). Hence, 

according to the above, there is a C3 > 0 such that 

(3.7) (1 - c3k)llln+I"1II+1 < Illrnen II + &lclklln 112 + ck- 1I4n'2I. 

Now, since v > 1, r(0) = 1 = -r'(0). So let z1,0 > 0 be chosen so that Ir(z)I < 

1- Oz, 0 < z < z1. By (1.7), u(kLn) C [O-1cok, oo) for some co > 0. Thus, using 

a spectral argument, it follows that for k small enough, there is a c E [-co, 0] such 

that 

(3.8) |IrhnXII < (1 + 6k)llxll VX E Sh 

and c < 0 if (1.20) holds. Finally, (3.5) follows with (3.7) and (3.8), and c > 

6+c3+6e7Clc. 0 
The conditions of the following proposition guarantee that c < 0 in (3.5), and 

hence the approximations decay. 

PROPOSITION 3.2. Suppose h = wh4 + t/4 and let (1.20) and (1.21) be 
satisfied. Then there is a constant c < 0 such that (3.5) holds. 

Proof. Suppose it has been established that for some e1 > 0 and c < 0 

(3.9) IkngII2 + (1 + el)I(kL 1)112Sn"II2 < (1 + 6k) Illn 
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By (1.7) and (3.4), 

(efl, Xfl+) + (1 + n1)(k+1 n n, n ) 

(M hn, Xn(l) + (1 +?)(tn+l)l/2MZhnn (kn+1)1/2en+l 

+ ((kL n+l)-1/20n, (kL n+l)1/2en+l) 

+ (1 + El)((kL hn)12 x (kL n 
< 1{_W,>nfl2 + (1 +2 nI2 

-2 {lh ||+( 1 + El ) || (Uth+ 1 h /tn( 1 

+ A{lIg 112 + (1 + l) 1(kL n+l)1/2tn+1 12} 

+ ?1lk-1 IIlpnIII2 + 21 E 11 (kL n+1) 1/2 tn+ 11l2, 

and (3.5) follows after combining the above inequalities. Now for (3.9), the following 
are required: 

(3.10) | |II~~nI12 < IIgnI12 _ Cl(k2hn)1/2nI112, 

(3.11) 1Ihn nlI2 + c2II(kL n) l/2_neII2 < IIenII2 + Cl I(kL )/2 2~II2 

(3.12) 1I (kLn) 1/2.hnIn 112 ? (1 +c3k)II(kL)1/2 n I2 

where 
-Tn 

[I + kA h]-le~n and C2 > c1 > 0. For (3.10), note that h = 

nL - kbTI~n, and hence 

II$Wnn 112 = II&n 112 - 2k(eE, B ,n) + k2 (bTy~n, bTFn) 

= IIen 112 - 2k([I + kA Bn ~ n) + k2(bbTIgn,Fn) 

= IInII2 -_- - k2n(MI nI- -). 

The last term can be ignored since by (1.21), M is positive semidefinite. Also, for 
X e Sh and i'F = (yhn)1/2X, by (1.21) and (2.8), 

(BX4YnX) = IIB1/2%pII2 + (BIP, (yfln)1/2 [3r ($n)l/24) 

<c(l - k)II(2Yn)l/2XII2. 

Hence, (3.10) is established. Next, for (3.11), write Mnn=(I-bTAle)(n+ 
bTA ln and note that by (1.18) and (1.20), r(oo) 1 - bTA-le E (-1,1). So, 
using (3.10), 

(I (L/)h28-n 112 = r(oo)((Ln)l/2',hnen, (Lhn) 1/ n) 

+ ((Ln)l/2_iqnbTAl(5hn)l/2nn 

< 2 Ir(oo)|{11(Ln)l/2,qhn nII2 + (n) 1/2 }n 1 2} 
+ E2II(Ln) 1/2Whn nI2 + c4 lk-1{11InI12 _ IIWhnhnII2}, 

and (3.11) follows if E2 > 0 is chosen so that c2 _(1-2 - Ir(oo)I)E2c4- > 

2Ir(oo)IE2C-1 cl. Finally, (3.12) follows after using (3.6) and (1.19) in 

II(kthn)1/2.WhnenI.I < I[h) l/2 (,Whn _rn)(k n)- 1/2](k n)l/2CnII 

+ IIrn (kLn) 1/2 n II 

Next, (3.11) and (3.12) are used to obtain (3.9). Suppose that E2 is small enough 
that c2 < 1. Then, assume that ko > 0 is small enough that if 0 -(1-C1)/(1+c3ko), 
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then c2 + 0 > 1. Next, multiply (3.12) by 0 and add the result to (3.11). With 
c5 _C2 + 0-1 > 0, and 0 < k < ko, 

I IWhn ,n II2 + (1 + C5) || (kL n) 11/2_hn n 1 lI2 < IIII n II 2. 

By (1.7), there is a c6 > 0 such that 

C6kII-Whn CnII2 < 2C5 11 (kL n) l /2,gqhn Cn 11 2. 

Also, by (2.7), with Xn-(ktn)1/2'qn n, 

n+1)1/2,gWn~nI2 = IIxnII2 + ((Tn)1/2[Lhn1 - Ln](Tn)1/2XnXn) 

< (1 + c7k) 11 (kLh)h/2g ,nlI2 

From the last three inequalities it follows that 

(+ckII~qhn~II2 + (1 + n~l~/2(1 nII ? III nIII2. (1 + C6k)lhnll + 1 C5)(1 + C7k)-l II(ktnL l2thnnl< 1nl2 

So assume that ko above is also small enough that 

(1 + 1Cs)(1 + c6ko)-l (1 + c7ko)-l > 1 + E1, 

for some el > 0. Then (3.9) follows for some c E (-c6, 0). 0 
The next two lemmas are useful in subsequent consistency estimates. 

LEMMA 3.2. Fix integers 1, m > 0, and let to, tl, t2 E [0 t*] with It2 -tl I < ck. 

Then 

(3.13) sup IIL'(to)9'w(t)II < c(l)IIu0II2(1+l)i 0 = 0, 1. 
O<t<t* 

Also, with E ft (t2 - at)m w(t) dt, there exist E1 and E2 such that E = E1 + E2 

while 

(3.14) II [kLh (to)]1/2El II < c(l)hkm+ l/2+i IIU11u2(1+i), i = 0, 1; 

(3.15) IIkLh(to)E211 < c(l)km+l+iIUO112(1+i), i = 0, 1. 

Furthermore, for 0 < n < n*, 

(3.16) IIIEIIIn < c(l)(km+l + hkm+l/2 + h2km)IIuO1121. 
Proof. See [14]. 0 

LEMMA 3.3. The following holds for 0 < s < k and 0 < t < t*: 

(3.17) l IIa, (8)II + hII5Z112(t)a9Cn(S)II < ch2IIu0OI12p- 

Proof. See [14]. 0 
The order of consistency is established as follows. 

PROPOSITION 3.3. The term 4"n in (3.3) satisfies 

(3.18) IIIVIn lIn < ck(hT + kM + hk-1/2 + h2kA-)IIuOII2(I+1). 

Proof. First, consider . By differentiating h~ ) fl(s) = ) and 
using (1.28), it can be shown inductively that 9Wn(0) - D te64wn, 0 1 I < -1. 

Therefore, 

- ew n = DLea'wn! + E, E- 1 - (k s)Ml9/fl(s) ds 
1= 
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Next, by (1.28) and (1.26), 

'0-1 '0-1 k' 
kA rj F eatw(rn) = D'ea'wn_- + F. 

m=O 1=1 

F--( 2)! APne f (rTn-) - 2a'w(t) dt. 

Nowf V=E-Fwith 

E-= kl/2bTAl [I + k /2(n)1/2 Zn(,n)1/2 yn)/2 

F-bTA-l[I+kAI I-1(k- f)1/2A(8El),/2[I - 

+ bTA [I + kAI1- 1 (k..n)1 r/2A[(k52) /2F1] 

+ bTA-' [I + kAnI-1A[k2,nF ] 

where F = F1 +F2 is the splitting guaranteed by Lemma 3.2. The estimate required 

for o/n then follows using (3.2), (2.6) (3.17), (1.29), (2.8), and inequalities of the 

form (3.14)-(3.16). Now consider n After differentiating ( ()n 
with (1.28) and (1.1) it can be shown that 9lii(O) = -Dle+un, O < I < ,u-1. 

Hence, 

U= - j DLea'+ un!- + 1 fk(k-s)1 i(8) ds. 
1=0 

Then, by (1.1) and (1.28), 

'0-1 0-1 ki 

-E rn Y(rm) = Y' Dlea6+lun 
m=O 1=0 

+ rn 
I rel ('rm-t)A-aA+1u(t) dt. 

So the required estimate for on follows with (3.2), (2.2), (1.4), and (1.29). Next, 

the estimate required for on follows with (3.2), (1.29), (1.12), (1.13), and (1.4). 

Finally, consider Vfn. First, 

-n+ = 91n + G G-- (tn+l - t)M9a'+1w(t) dt. 

By (1.28) and (1.27), 

kbT E rn eatw(rn ) = Ealwn1 + H. 
m=O 

k, MA f7rn 

t b' Frn e | (n - t)1A 11A+1(t)dt 

Hence, 5 = -G + H, and the estimate required for + follows after apply- 

ing Lemma 3.2 to G and H, and using (1.29) to obtain inequalities of the form 

(3.16). E 
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With the consistency complete, it is now appropriate to discuss the development 
of the techniques used. First, it is possible to construct an error equation alternative 
to (3.3) which circumvents the constructions of Section 2. However, this requires 
inverse properties. For example, one option involves the following replacements: 

'0-1 ki 
>n ,, E 

DLea'wnfr, 

1=0 

-- kbTA-1[I + kA ,]-A E r)[ - (rm)] 
m=O 

Then in the above proof, V(s) is changed to h(s)Cn(s), and bounding derivatives 
of the latter involves bounding products of the form L(')(8)T(,)(t). This can be 
accomplished using inverse assumptions as demonstrated by Bales [2]. 

Also, the original idea for overcoming the suboptimal convergence rates men- 
tioned in connection with (1.33) was to find q x q matrices {D1};'"J with which the 
following would lead to optimal convergence estimates: 

v-1 

i, r (bmn)l =-Di O < I < v -1; 
m=O 

v-1 v- (1 k 

E - F h (tn + En k) E B D2 (t 
m=O 1=0 

However, attempts to prove an optimal order of consistency have repeatedly led to 
the following conditions for the matrices {D1 }": 

Doe = e; DiDje = Di+je, 0 < ij, i + j < v-1; 

lAD_1e =Die, 1 < I < v-1. 

To see this, consider for example adapting the estimate for 01. Unfortunately, 
even though the number of unknowns matches the number of constraints in the 
equations above, it is shown in [15] that they can be solved only if v < q + 1. 

Now, (1.5) is established in the following for (1.32). 

THEOREM 3.4. Under the conditions of Lemma 3.1 and either Proposition 3.1 

or 3.2, {Uhnjn}*L are well defined by (1.31) and (1.32), and the following holds: 

(3.19) max IIU n _ unII < c*(hr + kM + hk-1/2 + h20k1)j1lujI.? O<n<n* h 

Also, unless c < 0 in (3.5), c* depends exponentially on t*. 

Proof. Set E _[(hr + kM + hk'0-/2 + h2k,0-1) IIU0II I]2 . Then, combining (3.5) 
and (3.18) for (3.3), 

r v n+g thi < (1 + + k)+1nd2 + clskEm i < n < n*is 

After dividing this by (1 + jk)n+1 and summing, the result is 
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Now, according to (1.31), [I + kUi] 0 = [Po - PE]uO. So with (1.13), (1.11), and a 
spectral argument, it follows that 

(3.20) III1III ? c|| [Po-PIuII 11( [I + kUhl 1[PO - PEIu0II < chrIIUOIr. 
Then, (3.19) follows with (1.12) and the last two inequalities. 0 

4. Iterative Approximations. In this section, the iterative scheme (1.39) is 
analyzed for the approximation of the solution to (1.1), and (1.5) is established. 
First, a brief discussion of Preconditioned Iterative Methods (PIM's) is given. See 
Hageman and Young [11] for more information. 

Let H be any finite-dimensional Hilbert space equipped with an inner product 
(, )H and an associated norm 11 1H. Also, let Q: H -? H be H-selfadjoint and 
positive definite, and suppose that an approximation is required for the solution x* 
to Qx* = b. Then, suppose that QO: H -? H is H-selfadjoint and positive definite, 
and that solving QoX = b is relatively inexpensive. Furthermore, assume that Q 
and QO are equivalent in the sense that 

(4.1) Pl(QoXX)H < (QX,X)H < P2(QOXX)H VX E H. 

The operator QO is called the preconditioner and the PIM's of interest in this work 
are those with the following properties: 

(i) If {xj}j~_ are given approximations to x*, the solution of Qx* = b, then 
calculating xJ+1 only involves computing QX,Qox,(QxX)H, and (QOX,X)H for 
certain x E H, and solving equations of the form Qoi = b. 

(ii) There is a smooth decreasing function a: (0,1) -? (0,1) such that U(1) = 0 
and, if (4.1) holds, then 

(4.2) IIQ12 [X* - XjIIIH < C[U(P1/P2)]jIIQ/2[X* - XOIIIH. 
For example, the Preconditioned Conjugate Gradient Method satisfies the above 
properties, and it is popular for having a(s) = (1 - +/s)/(1 + ,/s) as opposed to, 
say, (1 - 8)/(1 + s), which is offered by various other PIM's. 

Now, the rough discussion prior to (1.39) is expanded with more details. First, 
suppose that for 0 < n < n* -1 {U I }Um O and {U}h }1 have been computed 
using methods described below, and recall that an efficient procedure is needed for 
computing Uh defined by (1.34). Next, let VLO denote an initial approximation to 
Uh given as indicated in (1.36). Now, instead of actually computing {V7}0<1?1n as 
suggested by (1.35), proceed as follows. Let a sequence of positive integers {In }n=O 

be specified. Then, suppose in an inductive fashion, that for I > 1, VLn has been 

computed from jn PIM iterations as prescribed below, and let VLn be defined by 
the outer iteration: 

(4.3) [I + kA5hn](SV1n) = {SeUh + kSA(56hn - _)VA_1,}, 1 < I < in, 

with the understanding that Vn_ Von. Letting n and I be fixed, (4.3) can be 
written in the form 

(4.4) [I + kAUiLnh]o = i- kOiLhnok, 1 < i < q, 

where 4'o0, < -(SV1n)i, 1 < i < q, and according to (1.28) with I = 0, 
(U-1 

(4.5) Oi- SeUh +rkA 
h rm2h '(7 LiVn 
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The natural preconditioning for (4.4) involves [I + kLU] which, according (1.10) and 
(1.24), is equivalent to the operators of (4.4), i.e., for 1 < i < q and 0 < n < n*, 

(4.6) 
Pl([I 

+ kL5OIX, X) < ([I + AiL']X, X) < P2([I + kLOIX, X) VX E Sh. 

Now, to cover the case that A is not diagonalizable, define Oi with 

(4.7) [I + kAUiL ])i = Oi k-jiLnIV1,' 1 < i < q, 

where ik~jn-0. Also, to obtain i/' for 1 < i < q, set I-A _ (SV )i and let 

iterates {i1i}o<j<jn be given by a PIM with preconditioner [I + kLU]. Then as 
(4.2) follows from (4.1), from (4.6) it follows that 

Ih0i - ib lblo < c[U(Pi/p2)Iiibfi- i AIow 

Finally, take TI_ (1, 02,... ,V)T and pJi (+ifXi/,. ..,fq)T, so that V1n = 

S-1T and inner iterates for (4.3) are defined by 

(4.8) V1,O = I -LinX VI) _= S 1iv, 1 <i < one 

It is shown in [14] that 

III|hVln III|| < (ck + C [U (P1 /P2)illh-a in IIIO | > 1 

So, given some E0 > 0, jn is chosen so that 

(4.9) IIIUh-V1'n lb <I'nIIUh-V -1,inIo, 1 < I < In, 

where 

(4.10) 2 { Ik, 0<?u 
(4.10)~ ~ ~ O 

Eo { tn+l 0 < n < n*-1 

Finally, Uhn and UhnJ are given by (1.39). From the last three inequalities, it 
follows that the integers {jn}n* 

- 
may be chosen so that En> i lInij/n* < c as 

claimed in the Introduction. 

The next objective is to show that the convergence rate (1.5) can be preserved 
even when {lj }nn -o are chosen so that (4.9) and (4.10) hold. So additional stability 
and consistency results follow. First, define n U Uhnw and I/n= nwn -n+- 

where o/n is as in (3.3). Now, according to (1.39) and (1.32), Uhn+1 - hnUhn = 

-bTA- 1 (Uln U-hnj). Thus, 

(4.11) hn+1 =- ,gn+41nbTA-l (ihU - ) 

By (4.9) and (1.39), (Uh- Un) can be estimated in terms of (Uhn- Von). So, the 
error equation (4.11) is supplemented with the following one, which is obtained 
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from (1.34) and (1.36) after some straightforward calculations: 

= (_ 1)n-m(I8n?+)VI+ kAIh ]kA(Z'-ZSh ) 
m=n-1i-Hn, 

x [IU+ kAZI1eVm 

n-1 

+ [I + kAIL (l)f (n( m-1) im ] 
m=n- 1 -H 

- Z (~1_1)n-mQ n + l) (U h y _ 

m=n-1-/-n 

nE (-l~n-m 8n + 1x [I+ kyh lkA m' _ lqmh 

m~n-1-in 
x [I + k~ y - w -----nkAn k' rietwrM] 

(4.12) -k Z (-1)n-m (j1n + ) [1 + kAIi~I kA(Ig - 

m=n- 1 m l 
n-1 

-m An+~ z- 

x [1+n A Im -em- kA Z Funeat(rmr)} 

(4.12) -k Z (-1)nm ( + 1) [I +kA 

m=n-1-Hn~ 

x E L' a(rr)[(m )-POeU(rti)] 
i=O 

- k ZE ( n_)n-m (in + T) [I+ 
m=n-1--Hn 

x Z F~~{[PE(~rrz)- Pour) 

-[ + z - (~)nmQ~[I (n-m) 
m=n- 1 -J mn 

{ rewi kAZ Ieat(rm)} 

s=0 

Before analyzing these error equations, a few adjustments must be made in Propo- 
sitions 3.1 and 3.2 for the following stronger stability inequality: 

ISIn+l < (1 + [k)I+ - col[I rh] 2 In + ck 1U - I 
(4.13) + ck[(hr + k; + n-m+ h2k4-s)IIUOII2 

0 < n < n*-1. 

PROPOSITION 4.4. Let (1.22) be satisfied. Then there are constants co > 0 

and c such that (4.13) holds. In fact, c < 0 if (1.20) holds and c(1) of (1.8) is small 
enough. 
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Proof. See [14]. 0 
As with Proposition 3.2, c < 0 is guaranteed for (4.13) by the following 

PROPOSITION 4.5. Let (1.20) and (1.21) be satisfied. Then there are constants 
co > 0 and c < 0 such that (4.13) holds. 

Proof. See [14]. 0 

Now, the terms of (4.12) are estimated as follows. 

PROPOSITION 4.6. The terms of (4.12) satisfy 

n-1 

IIJUnh -'vOnjjn < E ITU~h |llI1m + ISmX -Smlllml 
m=n-1-/An 

n-1 
(4.14) + ck E IIktmIm 

m=n-1-/An 

+ ck(hr + k/An + hkA-1/2 + h2k-1)IIuo0IIa 
1 < n < n*-1. 

Proof. The techniques required are similar to those used for Proposition 3.3. See 
[14]. o 

Next, (4.14) is combined with (4.9) for the estimation of the term k- 1 lUnh n III2 
in (4.13). 

PROPOSITION 4.7. With UC defined by (1.34) and Uhn by (1.39), the following 

hold: 

n-1 
k-lllUC - Un<lll2 ? ck-1/32 E {1ui - Uhmuuim + _llk(mj - MmliI 

} 

m=n-1-/An 
n-1 

(4.15) + ckfln E lMl 
m=n-1-/An 

+ ck[(hr + k" + hk-1/2 + h2kA-1)1u01a1]2, 

1 < n < n*-1, 

(4.16) lIIUh - Uh?110 < ck"lu |ll. 

Proof. By (1.39), (4.9) and (3.4), 

IIIUh -UhnIIln < Cflnn I||-V~hontl1nx 0 < n < n -1 

From (4.10) and (1.37) it follows that 

kAnnkAn< ckA, 0 < n < n*-1. 

Finally, (4.15) follows after combining the last two inequalities with (4.14). Also, 
by (3.2), (3.20), and (3.13), 

IIhUh - VO?lo ? cIllUhh C lo ?< cl||f? |ll + clllo W|IllO < CHU| || 

and (4.16) follows after combining this with the two estimates above. 0 

Now, (4.15) demands an estimation of the differences Isn+l - snlln, and this is 
the content of the following proposition. 
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PROPOSITION 4.8. If (1.22) and (1.23) are satisfied, then the following holds: 

-lj~~ nII + III[I - r n+1I1/2,n+11112+ cilif S [ln + g[ h ]S ln+1 

(4.17) < c2k "IInI + cIIIU, - n + (1 + c3k)III[I - rh /2fnhIIn 

+ ck2[(hr + k'+ hk-l/2 + h2k-1)1u01]2, 0 < n < n*-1. 

Proof. See [14]. O 
Finally, the convergence result (1.5) is established for (1.39) as follows. 

THEOREM 4.5. Let the conditions of either Proposition 4.4 or 4.5, in addition 
to those of Lemma 3.1 and Proposition 4.8, be satisfied. Then {in}n -1 can be 
chosen so that (4.9) and (4.10) hold and provided c0 > 0 is small enough, the 
approximations {Uhnj}n 0 obtained by (1.31) and (1.39) satisfy 

(4.18) max IUhn _ unII < c*(hr + ks+ hk-l/2 + h2k-l)IIuOII. 
O<n<n* 

Also, unless c < 0 in (4.13), c* depends exponentially on t*. 

Proof. Add c h 
_Q- UJn to both sides of (4.17) and multiply the resulting 

inequality by ek-ltn+l. When this is added to (4.13), the result is 

Il'nIIn+ 1 + clek1tn+1 {l n+1 - ;nIII2 + IIIUn n cIII 2 

+ ek-1tn+1 III [I - rn+1]1/2,n+112 

< (1 + ck + Cc2k n + ck- IIIUh Un [III 
+ ck[(hr + k' + hkAl/2 + h2kA-l1)II I2 

tn 1 <n]1/nnI 1 + [eik-1t~~ + C3k)- co] II[I -rhn~/S [lni < n < n*-1 

Now, for the compression of this inequality and others below, let the following be 
defined: 

Zn III III 2 =n+1 IIn+1 - fnIII2 + - UUn n III 2 

Sn _III[I - rn]1/24;nII12 E =[(hr + k'A+ hk/-1/2 + h2k-l) JU011a]2. 

With this notation, the following results after estimating ck-11fUnh - UQnII1 with 
(4.15): 

z1+1 + cjk-letl+lDL+l + ck-1t'+1S'+1 
1-1 

< (1 + ck + c2ekt*)ZI + c4/?2 E [k-lDm+l + kZm] 
m=l- 1 -JAI 

+ ckE + [ek-ltl + 6(1 + c3t*)-coIS', 1<1 < n*-1 

Now, assume that e > 0 is chosen small enough that e(1 + c3t*) < co. In fact, if 
c < 0, suppose that 1 + ck + c2ekt* < 1 + ck for some c < 0. Otherwise, take c > 0 
in the following. Then, after summing the last inequality over 1 < 1 < n < n* - 1, 
one gets 

n 
(Zn+l - Z1) + ek-l(tn+lSn+l - t1S') + cek-1 E tl+lDl+l 

1=1 

n n I-1 
< ?kjZ + C4 Z32 >j [kZm +k-lDm+l] 

1=1 1=1 m=l-1-i-JA 

+ ct*E, 1 < n < n*-1. 



GALERKIN/RUNGE-KUTTA DISCRETIZATIONS FOR PARABOLIC EQUATIONS 583 

By (4.10) and (3.20), for 1 < n < n* - 1, 

n n I-1 n 

ckE Z + c4kZ3 E < (C+ C460(, + l)t*)k ZZ + ckZo 
1=1 1=1 m=l-1-,s 1=1 

n 

< ekIZ' +ckE, 
1=1 

where c < 0 if c < 0 and co > 0 is small enough. Otherwise, take c > 0 in the 
following. Next, since (l + 1)/(m + 1) < ? + 2 if 0 < l-1-piA < m < I-1, it 
follows, using (4.10), that for 1 < n < n* - 1 

n I-1 n I-1 

C4k- 
1 

'312 E Dm+l < C4kleo>E E I+ 1 tm+lDm+l 

1=1 m=l-1-IAI 1=1 m=1-1-IAI + 
n 

< C56 k-l tl+'Dl+l + cD1. 

Combining the last three inequalities, one obtains for 1 < n < n* - 1 
n 

zn+1 + ek-ltn+lSn+l + (C1e - c5eO)k-1 Etl+DlD+ 

1=1 
n 

< (Z +?eS1 +cD1) +ct*E+ ek ZZ. 
1=1 

By (3.4), (4.17), (4.16), (1.19) and (3.20), Z1 + S1 + D1 < cE. Now, assume that 
co > 0 is chosen small enough so that 

11 In+1 < ct* [(hr + k +hk-/2 + h2k'A-) IIUOll]2 
n 

+ ek E 
1 
IIItgg 

2 
O < n < n* -1. 

1=0 

If c < 0, ignore the last sum, and (4.18) follows after (1.12). If c > 0, then 
(4.18) follows with the discrete Gronwall Lemma and (3.20), but with c* depending 
exponentially on t*. 0 

5. Examples. The principal aim of this section is to present some computa- 
tional results showing the strength of methods analyzed in this work. However, 
it is appropriate to first indicate that the set of IRKM's which satisfy the many 
conditions imposed in foregoing proofs is by no means vacuous. For example, in 
[16], it is explained that there exist q-stage methods of order q + 1 and satisfying 
(1.20), (1.21), (1.24), (1.25), and (1.38), provided q = 1,2,3, or 5. Furthermore, 
[16] gives explicit constructions of families of such methods for q = 2 and 3. On 
the other hand, it is shown in [16] that for every positive integer q there exists a 
collocation type IRKM satisfying (1.20), (1.24), (1.25), and (1.38). 

As mentioned in the Introduction and more carefully in [16], the preferred meth- 
ods in a parallel environment are those for which the eigenvalues of A are distinct. 
These have been referred to as multiply implicit (MIRK) methods. Further, they 
are called real if a(A) C R, and otherwise complex. While the latter case has not 
been studied here, it is discussed in [16]. By considering that discussion together 
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with the results of Bramble and Sammon [3], it can be seen that complex MIRK's 
can be analyzed using quadratic preconditioning and hence inverse assumptions. 

In contrast to MIRK's there are the well-known methods for which the eigen- 
values of A are identical and real, [12]. As seen in (4.7), these so-called singly 
implicit (SIRK) methods offer a computational advantage on serial machines since 
at each time step, they require the formation of only a single new matrix with the 
dimension of Sh. A selection from this set of methods was made for the example 
considered below. 

The following problem is of the class defined in the Introduction: 

atU = -L(t)u in (-1,1) x [0, .1], 
u=0 on {-1,1} x [0,.1], 

u(x,0) =1-x2 in (-1,1), 

where 

L(t)u _-a,(e1(X, t)au) + to(X, t)u, 

il (XI t) -- (ll(2) + t1 x22) (2 + X2)t+l 

?0(zx t) - log(2 + X2) - 3 log(2)(2 + x2)t. 

The solution is given by 
1- XA 

u(x, t) = (2 + X2)t. 

For the spatial discretization, the Ordinary Galerkin Method was used and Sh was 
constructed of smooth cubic splines defined on a uniform mesh. For the temporal 
discretization, the well-known three-stage diagonally implicit (DIRK) method was 
used, as it satisfies (1.20), (1.21), (1.24), and (1.25). ([8], [15]) 

TABLE 1. Modified method 

k, h CPU Time (sec) L2 Error (x109) Order 

1/50 22 1.19 

1/60 30 .525 4.49 

1/70 38 .266 4.42 

1/80 48 .148 4.37 

1/90 59 .0889 4.33 

1/100 72 .0565 4.30 

Now let (1.39) be identified as the modified method, and an analogue based 
on (1.33) as the classical method. In addition, let a hybrid method be given by 
(1.39), but with D1 replaced by T1 in (1.28). These three methods were tested 
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on a SUN 3/180 with FPA. Defining E(h, k) I_ IUh - u 11, the L2 errors E(k) _ 
E(k, k) are reported in Tables 1-3, together with estimates of the convergence order 
obtained according to the formula log(E(k2)/E(k1))/log(k2/k1). 

With regard to time consumption, recall that the computational burden for the 
classical method is in forming q new stiffness matrices at each time step. On the 
other hand, with the constants {6n }?<-n<n* given by (1.30), the burden for the 
modified method is in forming the terms Xi of (4.5), for the right side of (4.7). 
Also, the initial step is relatively expensive, but the effect of this diminishes as 
the number of time steps increases. Note that among the three methods tested, 
numbers for the modified method were obtained with greater speed and accuracy, 
as well as with fourth-order convergence. On the other hand, the others suffer from 
suboptimal convergence as explained in the Introduction. However, no rigorous 
explanation can be offered for the identical accuracy obtained by the classical and 
hybrid methods. Further, this author is unaware of any proof of the better than 
second-order convergence seen in Tables 2 and 3. In this connection, note that the 

TABLE 2. Classical method 

k,h CPU Time (sec) L2 Error (x109) Order 

1/50 22 28.5 

1/60 31 16.0 3.16 

1/70 41 9.80 3.19 

1/80 52 6.36 3.23 

1/90 65 4.35 3.24 

1/100 77 3.09 3.24 

TABLE 3. Hybrid method 

k, h CPU Time (sec) L2 Error(x1i9) Order 

1/50 23 28.3 

1/60 30 15.8 3.21 

1/70 38 9.61 3.21 

1/80 49 6.25 3.22 

1/90 59 4.28 3.22 

1/100 71 3.04 3.23 
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above solution has no time derivatives which are even in the domain of L(t)2, a 
condition considered necessary to escape order reduction in a general way. Never- 
theless, only second-order convergence is demonstrated, for example in Experiment 
7.5.1 of Dekker and Verwer [8], where a stiff ordinary differential equation is con- 
sidered. Further, the modified method has been applied to this problem to give 
not only fourth-order convergence, but accuracy exceeding that reported for any 
method discussed in the Experiment. 
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